(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU

Sr. No.
Time : $\mathbf{1 1 / 4}$ Hours
Max. Marks: 100
Total Questions: 100
Roll No. (in figures) \qquad (in words) \qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-June, 2023/(Statistics)(SET-X)/(A)

A

1. The vectors $u=(6,2,3,4), v=(0,5,-3,1)$ and $w=(0,0,7,-2)$ are :
(1) Dependent
(2) Independent
(3) Data is insufficient
(4) None of these
2. Let a 4×4 matrix P have determinant 10 , then the determinant of matrix $-3 P$ is :
(1) -30
(2) 30
(3) -810
(4) 810
3. The eigen values of the matrix :

$$
A=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 4 & 0 & 1 \\
3 & 1 & 5 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

are :
(1) $3,2,3,4$
(2) $1,2,4,5$
(3) $1,2,3,5$
(4) $3,2,1,4$
4. Let $S=\{(1,2,3),(1,0,-1)\}$. The value of k for which the vector $(2,1, k)$ belongs to the linear span of S, is :
(1) 1
(2) 2
(3) 3
(4) 0
5. If ' A ' is a square matrix and A ' is its transpose, then $A+A$ ' is :
(1) Symmetric
(2) Skew-symmetric
(3) Hermition
(4) Skew-Harmition
6. The dimension of zero space is :
(1) 0
(2) 1
(3) 2
(4) 3
7. Which of the following is not true ?
(1) Every subset of a linearly independent set is linearly independent
(2) Every super set of a linearly dependent set is linearly independent
(3) Any set which contains the null vector 0 is linearly dependent
(4) None of these
8. Any square matrix ' A ' is said to be Idempotent if :
(1) $A^{2}=0$
(2) $A^{2}=A$
(3) $A^{\mathrm{m}}=0$, if \exists a positive integer ' m '
(4) $A^{2}=I$
9. Which of the following is true ?
(1) C is not a vector space over C
(2) C is not a vector space over R
(3) R is not a vector space over C
(4) Q is a vector space over R
10. Which of the following matrix satisfy $A^{2}-5 A=0$
(1) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(2) $\left[\begin{array}{cc}-1 & 0 \\ -2 & -3\end{array}\right]$
(3) $\left[\begin{array}{cc}0 & -10 \\ -5 & 0\end{array}\right]$
(4) $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
11. $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ is equal to :
(1) 0
(2) 3
(3) $\frac{3}{2}$
(4) $-\frac{1}{3}$
12. $\operatorname{Lim}_{x \rightarrow 0} \frac{4 x^{5}+9 x+7}{3 x^{6}+x^{3}+1}$ is equal to :
(1) 4
(2) 0
(3) 5
(4) 6
13. Consider $f(x)=\left\{\begin{array}{ll}\frac{|x|}{x} & ; \quad x \neq 0 \\ 1 & ; \quad x=0\end{array}\right.$, then :
(1) $f(x)$ is continuous at the origin
(2) $f(x)$ is not continuous at the origin
(3) $f(x)$ is differentiable at origin
(4) None of these
14. The $n^{\text {th }}$ derivative of $e^{2-3 x}$ is :
(1) $3^{n} e^{2-3 x}$
(2) $(-3)^{n} e^{2-3 x}$
(3) $\frac{1}{3^{n}} e^{2-3 x}$
(4) $\frac{1}{(-3)^{n}} e^{2-3 x}$
15. $\operatorname{Lim}_{n \rightarrow \infty}(n)^{1 / n}$ equal to :
(1) ∞
(2) 0
(3) 1
(4) does not exist
16. The value of $\int_{0}^{\pi / 2} \sin ^{2} x \cdot d x$ is :
(1) 0
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$
17. The minimum value of $|z-2|+|z-3|$ is : (where z is real number) :
(1) 0
(2) 1
(3) 2
(4) 3
18. If u be a homogeneous function of degree ' n ' in x and y, then :
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=n u$
(2) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$
(3) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=(n-1) u$
(4) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=(n-1) u$
19. The value of $\int_{0}^{1} x e^{x} \cdot d x$ is :
(1) 1
(2) 2
(3) 3
(4) 0
20. The function $f(x)=\left\{\begin{array}{cl}x \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x=0\end{array}\right.$ is :
(1) differentiable at 0 but not continuous
(2) having second derivative at the origin
(3) continuous at the origin but not differentiable
(4) neither continuous nor differentiable at the origin
21. The order of differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=a \cdot \frac{d^{2} y}{d x}$ is :
(1) 2
(2) 3
(3) 1
(4) None of these
22. The degree of differential equation $y=x \cdot \frac{d y}{d x}+a-\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
(1) 4
(2) 3
(3) 2
(4) 1

A
23. The solution of the differential equation $\frac{d y}{d x}=\frac{1-x}{y}$ represents :
(1) a family of circles centered at $(1,0)$
(2) a family of circles centered at $(0,0)$
(3) a family of straight lines with slope -1
(4) a family of straight lines with slope +1
24. The value of Wronskian $w\left(x, x^{2}, x^{3}\right)$ is :
(1) $2 x^{4}$
(2) $2 x^{3}$
(3) $2 x^{2}$
(4) $2 x$
25. The solution of $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$ is :
(1) $y=c_{1} e^{-x}+c_{2} e^{x}$
(2) $y=c_{1} e^{-2 x}+c_{2} e^{-x}$
(3) $y=c_{1} e^{-2 x}+c_{2} e^{x}$
(4) $y=c_{1} e^{-2 x}+c_{2} e^{2 x}$
26. The P.I of $\left(D^{2}+5 D+6\right) y=e^{x}$ is :
(1) e^{x}
(2) $\frac{e^{x}}{6}$
(3) $\frac{e^{x}}{10}$
(4) $\frac{e^{x}}{12}$
27. Integrating factor of $\frac{d y}{d x}=\frac{y}{x}-1$, is :
(1) e^{-x}
(2) $e^{-\frac{1}{x}}$
(3) $\frac{1}{x}$
(4) $\frac{-1}{x}$
28. The solution of $\frac{d x}{d y}+P x=Q$, where P, Q are functions of y only or constants :
(1) $x \cdot e^{\int P \cdot d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$
(2) $y \cdot e^{\int P \cdot d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(3) $x \cdot e^{\int P d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(4) $y \cdot e^{\int P d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$
29. The sequence $\{1,0,1,0,1,0, \ldots \ldots \ldots\}$ is :
(1) increasing sequence
(2) decreasing sequence
(3) monotone sequence
(4) None of these
30. The series $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$, is :
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
31. $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}$ is equal to :
(1) 1
(2) e
(3) e^{4}
(4) e^{2}
32. The improper Riemann integral $\int_{0}^{x} y^{-\frac{1}{2}} \cdot d y$, is :
(1) continuous in $[0, \infty)$
(2) continuous only in $(0, \infty)$
(3) discontinuous in $(0, \infty)$
(4) discontinuous only in $\left(\frac{1}{2}, \infty\right)$
33. The series $2+4+6+8+$ \qquad :
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
34. For function to be Reimann integral, function should be :
(1) unbounded over finite domain
(2) unbounded over infinite domain
(3) bounded over infinite domain
(4) bounded over finite domain
35. The sequence $\left\langle\frac{1}{3^{n}}\right\rangle$ converges to:
(1) 0
(2) 1
(3) 2
(4) 3
36. Which of the following is not true :
(1) Interior of a set is an open set
(2) The intersection of an arbitrary family of closed set is not closed
(3) The union of a finite number of closed set is closed set
(4) Subset and superset of an open set may or may not be open
37. The optimal value of the objective function is attained at the point :
(1) On X-axis
(2) On Y-axis
(3) Corner point of the feasible region
(4) None of these
38. Any solution to a general LPP which satisfies the non-negative restrictions of the problem is called :
(1) unbounded solution
(2) feasible solution
(3) infeasible solution
(4) optimum solution
39. Which of the following method is not used to find an initial basis feasible solution to a transportation problem?
(1) North-West Corner Method
(2) Least Cost Method
(3) Vogel's Approximation Method
(4) Modified Distribution Method
40. In any simplex table, in the column corresponding to entering variable if all elements ≤ 0, then the solution will be :
(1) unbounded
(2) infeasible
(3) degenerate
(4) feasible
41. A necessary and sufficient condition for a basic feasible solution to be an optimum (maximum) is that (for all j) :
(1) $z_{j}-c_{j} \leq 0$
(2) $z_{j}-c_{j}=0$
(3) $z_{j}-c_{j} \geq 0$
(4) $z_{j}-c_{j}>0$ or $z_{j}-c_{j}<0$

PG-EE-June, 2023/(Statistics)(SET-X)/(A)

42. In a balanced transportation problem with ' m ' sources and ' n ' destinations, the number of linearly independent constraints is :
(1) $m+n$
(2) $m-n$
(3) $m+n-1$
(4) $m+n+1$
43. The graphical method of LPP uses :
(1) objective function equation
(2) constraint equations
(3) both (1) and (2)
(4) None of these
44. The transportation model is basically a linear program that can be solved by :
(1) Game theory
(2) Simplex method
(3) Both (1) and (2)
(4) None of these
45. Which of the following is not a relational operator in C ?
(1) $<$.
(2) $>$
(3) $<=$
(4) ++
46. Which of the following unit convert the data received from the user into a computer understandable format?
(1) Input unit
(2) Secondary storage
(3) Arithmetic and logic unit
(4) Output unit
47. Which of the following is not a type of Computer Code ?
(1) BCD
(2) EBC
(3) ASCII
(4) EBCDIC
48. Decimal equivalent of the binary number 101101 is :
(1) 42
(2) 43
(3) 44
(4) 45
49. Which of the following is the shortcut key to cut the selected content to the clipboard ?
(1) $\mathrm{Ctrl}+\mathrm{X}$
(2) $\mathrm{Ctrl}+\mathrm{N}$
(3) $\mathrm{Ctrl}+\mathrm{V}$
(4) $\mathrm{Ctrl}+\mathrm{C}$
50. Two binary numbers are added as given below : *

the (e, f, g, h) is equal to :
(1) $(0,0,1,1)$
(2) $(1,0,0,1)$
(3) $(1,0,1,0)$
(4) $(0,0,1,0)$
51. Formulae in MS-Excel always begins with :
(1) $=$
(2) $\%$
(3) *
(4) $\$$

A
52. One 'nibble' is equal to :
(1) 4 bytes
(2) 8 bytes
(3) 4 bits
(4) 8 bits
53. If δ and E are central difference operator and shift operator respectively, then which one of the followings is true ?
(1) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$
(2) $\delta \equiv E^{1 / 2}-E^{-1 / 2}$
(3) $\delta \equiv E^{1 / 2}+E^{-1 / 2}$
(4) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}-E^{-1 / 2}\right)$
54. Newton's backward formula is used when the interpolating value lies:
(1) in the beginning of the series
(2) in the middle of the series
(3) at the end of the series
(4) None of these
55. The Newton-Raphson's method is also called :
(1) Methods of tangents
(2) Bisection method
(3) Intrapolation method
(4) Extrapolation method

PG-EE-June, 2023/(Statistics)(SET-X)/(A)

56. The order of convergence of Regula-Falsi method is :
(1) 1.17
(2) 2.17
(3) 1.618
(4) 2.618
57. If E is shift operator and Δ and ∇ are forward and backward difference operators respectively, then :
(1) $\mathrm{E} \equiv 1-\Delta$
(2) $\mathrm{E} \equiv 1+\Delta$
(3) $\mathrm{E} \equiv 1+\nabla$
(4) $E \equiv 1-\nabla$
58. Secant method is also called :
(1) 2 - Point method
(2) 3-Point method
(3) 4-Point method
(4) 5 - Point method
59. If $f(x)=x^{2}+2 x+2$ and interval of differencing is unity, then $\Delta f(x)$ is equal to :
(1) $2 x-3$
(2) $2 x+3$
(3) $x-3$
(4) $x+3$
60. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) +1
(2) $\frac{-x_{2}}{x_{1}-x_{0}}$
(3) $\frac{x_{0}}{x_{2}-x_{1}}$
(4) -1

A
61. If shoe size of the most of the people in a city is number 8 , which measure of central tendency does it represent?
(1) Mean
(2) Median
(3) Mode
(4) Harmonic mean
62. Mean deviation is a measure of :
(1) Location
(2) Dispersion
(3) Correlation
(4) Skewness
63. Ogives, for more than and less than type intersect at :
(1) Mean
(2) Median
(3) Mode
(4) Origin
64. If X is a random variable with its mean \bar{X}, then expression $E(X-\bar{X})^{2}$ represents :
(1) the variance of X
(2) second central moment
(3) third central moment
(4) both (1) and (2)
65. In case of positive skewed distribution, the relation between mean, median and mode is :
(1) Mean $>$ Median $>$ Mode
(2) Mean $>$ Mode $>$ Median
(3) Mode $>$ Median $>$ Mean
(4) Mean $=$ Mode $=$ Median
66. If the coefficient of kurtosis γ_{2} of a distribution is zero, the frequency curve is :
(1) Leptokurtic
(2) Mesokurtic
(3) Platykurtic
(4) Skewed
67. Range of multiple correlation coefficient is :
(1) -1 to +1
(2) -1 to 0
(3) 0 to +1
(4) 0 to ∞
68. The coefficient of correlation between X and Y series is zero, the two regression lines are :
(1) Parallel
(2) Coincident
(3) Perpendicular
(4) Both (1) and (2)
69. If X and Y are independent random variables, then correlation coefficient between X and Y is :
(1) 0
(2) +1
(3) -1
(4) 0.5
70. Two lines of regressions X on Y and Y on X, intersect at the point :
(1) $(0,0)$
(2) (X, Y)
(3) $(\bar{X}, 0)$
(4) (\bar{X}, \bar{Y})
71. If $b_{x y}=0.2$ and $b_{y x}=0.8$, then correlation coefficient between variables X and Y is :
(1) 0.16
(2) -0.16
(3) 0.4
(4) -0.4
72. The correct relationship between Arithmetic Mean (A.M.), Geometric Mean (G.M.) and Harmonic Mean (H. M.) is :
(1) A. M. \leq G.M. \leq H.M.
(2) A.M. \geq G.M. \geq H.M.
(3) G.M. \geq A.M. \geq H.M.
(4) G.M. \geq H.M. \geq A.M.

A
73. The average of $2 n$ natural numbers from 1 to $2 n$:
(1) $\frac{2 n+1}{2}$
(2) $\frac{n+1}{2}$
(3) $n(2 n+1)$
(4) $\frac{n(n+1)}{2}$
74. Sum of deviations taken from mean is :
(1) Minimum
(2) Maximum
(3) 0
(4) 1
75. If the observations recorded on five sampled items are $3,3,3,3,3$, the sample variance is :
(1) 3
(2) 2
(3) 1
(4) 0
76. Total number of possible outcomes of a random experiment is known as :
(1) Exhaustive events
(2) Mutually exclusive events
(3) Equally likely events
(4) Independent events
77. The variable 'Height' is an example of :
(1) Pseudo variable
(2) Discrete variable
(3) Continuous variable
(4) None of these
78. If ' A ' be an event, then $\mathrm{P}(\mathrm{A})$ lies between :
(1) $[0,1)$
(2) $[0,1]$
(3) $(0,1)$
(4) $(0,1]$
79. A bag contains one red ball, three white balls and three black balls. Two balls are drawn from the well shaked bag. The probability of both the balls being red is :
(1) $\frac{3}{7}$
(2) $\frac{2}{7}$
(3) $\frac{1}{7}$
(4) 0
80. If A and B are two events, then P (neither A nor B) is :
(1) $1-P(A \cup B)$
(2) $1-\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(3) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})^{*}$
(4) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
81. For the constants ' g ' and ' h ' $\mathrm{E}(g X+h)$ is :
(1) $\mathrm{gE}(X)$
(2) $g E(X)+h$
(3) $\mathrm{E}(X)$
(4) $g^{2} E(X)$
82. If X and Y are independent random variables with variances σ_{1}^{2} and σ_{2}^{2} respectively, the variance of $X+3 Y$ is :
(1) $\sigma_{1}^{2}+\sigma_{2}^{2}$
(2) $\sigma_{1}{ }^{2}+6 \sigma_{2}{ }^{2}$
(3) $\sigma_{1}{ }^{2}+3 \sigma_{2}{ }^{2}$
(4) $\sigma_{1}^{2}+9 \sigma_{2}{ }^{2}$
83. If in a binomial distribution the mean is 4 and the variance is $\frac{4}{3}$, then the probability of success is :
(1) $\frac{1}{3}$
(2) $\frac{2}{3}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
84. If X is a Binomial variate with parameters ' n ' and ' p '. If $n=1$, the distribution of X reduces to :
(1) Poisson distribution
(2) Normal distribution
(3) Geometric distribution
(4) Bernoulli distribution
85. If the mean of a Poisson distribution is 5, then its standard deviation is :
(1) 5
(2) $\sqrt{5}$
(3) 10
(4) 0
86. The distribution for which mean is always greater than its variance is :
(1) Poisson distribution
(2) Binomial distribution
(3) Normal distribution
(4) None of these
87. If mode of the normal distribution is 10 , then its median is :
(1) 10
(2) 5
(3) 2
(4) 0
88. The mean and variance of a standardized variable are :
(1) $\mu=0=\sigma^{2}$
(2) $\mu=1, \sigma^{2}=0$
(3) $\mu=0, \sigma^{2}=1$
(4) $\mu=1=\sigma^{2}$
89. Two random variables X and Y are said to be independent if :
(1) $E(X . Y)=E(X)+E(Y)$
(2) $E(X \cdot Y)=E(X) \cdot E(Y)$
(3) $E(X, Y)=0$
(4) $E(X . Y)=-1$
90. If $X \sim \exp$ (7), the probability density function of X is :
(1) $7 e^{-X}$ for $X>0$
(2) $7 e^{-7 x}$ for $X>0$
(3) $e^{-7 X}$ for $X>0$
(4) $\frac{1}{7} e^{-7 X}$ for $X>0$
91. Index number for the base period is always taken aș :
(1) 100
(2) 1000
(3) 10
(4) 1
92. The circular test is an extension of :
(1) the time reversal test
(2) the factor reversal test
(3) the unit test
(4) None of these
93. If P is the size of a population, F and M are the number of females and males respectively in the sample population, then the sex ratio is usually defined as :
(1) $\frac{F}{P} \times 1000$
(2) $\frac{M}{P} \times 1000$
(3) $\frac{F}{M} \times 1000$
(4) $\frac{M}{F} \times 1000$

A
94. The death rate obtained for a segment of a population is known as :
(1) Neonatal mortality rate
(2) Specific death rate
(3) Crude death rate
(4) Standardized death rate
95. The condition for time reversal test to hold for price index number is given by :
(1) $P_{01} \times P_{10}=1$
(2) $P_{01} \times P_{10}=0$
(3) $\frac{P_{01}}{P_{10}}=1$
(4) $P_{01}+P_{10}=1$
96. If the income elasticity of demand for a good is negative, it must be :
(1) a normal good
(2) a luxury good
(3) an inferior good
(4) an elastic good
97. Which index number is considered as ideal ?
(1) Laspeyre's index number
(2) Paasche's index number
(3) Marshall - Edgeworth's index number
(4) Fisher's index number
98. The formula $\frac{\sum_{i=1}^{n} p_{1 i} q_{1 i}}{\sum_{i=1}^{n} p_{0 i} q_{1 i}} \times 100$ is used to calculate :
(1) Paasche's price index
(2) Paasche's quantity index
(3) Laspeyre's price index
(4) Laspeyre's quantity index
99. NSSO stands for :
(1) National Sample Survey Organization
(2) National Sample Survey Office
(3) National Small Survey Office
(4) National Sample Service Organization
100. Crude rate of natural increase is equal to :
(1) Crude birth rate
(2) Crude death rate
(3) Crude birth rate + Crude death rate
(4) Crude birth rate - Crude death rate

Sr. No.
Max. Marks : 100
Total Questions : 100
Time : $\mathbf{1 1 / 4}$ Hours
Roll No. (in figures) \qquad (in words)

Date of Birth \qquad
Name \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination

CANDIDATES MUST READ THE FOLLOWING INFORMATION/NSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
9. $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ is equal to :
(1) 0
(2) 3
(3) $\frac{3}{2}$
(4) $-\frac{1}{3}$
10. $\operatorname{Lim}_{x \rightarrow 0} \frac{4 x^{5}+9 x+7}{3 x^{6}+x^{3}+1}$ is equal to :
(1) 4
(2) 0
(3) 5
(4) 6
11. Consider $f(x)=\left\{\begin{array}{ll}\frac{|x|}{x} & ; \quad x \neq 0 \\ 1 & ; \quad x=0\end{array}\right.$, then :
(1) $f(x)$ is continuous at the origin
(2) $f(x)$ is not continuous at the origin
(3) $f(x)$ is differentiable at origin
(4) None of these
12. The $n^{\text {th }}$ derivative of $e^{2-3 x}$ is :
(1) $3^{n} e^{2-3 x}$
(2) $(-3)^{n} e^{2-3 x}$
(3) $\frac{1}{3^{n}} e^{2-3 x}$
(4) $\frac{1}{(-3)^{n}} e^{2-3 x}$
13. $\operatorname{Lim}_{n \rightarrow \infty}(n)^{1 / n}$ equal to :
(1) ∞
(2) 0
(3) 1
(4) does not exist
14. The value of $\int_{0}^{\pi / 2} \sin ^{2} x \cdot d x$ is :
(1) 0
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$
15. The minimum value of $|z-2|+|z-3|$ is: (where z is real number) :
(1) 0
(2) 1
(3) 2
(4) 3
16. If u be a homogeneous function of degree ' n ' in x and y, then :
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=n u$
(2) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$
(3) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=(n-1) u$
(4) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=(n-1) u$
17. The value of $\int_{0}^{1} x e^{x} . d x$ is :
(1) 1
(2) 2
(3) 3
(4) 0
18. The function $f(x)=\left\{\begin{array}{cl}x \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x=0\end{array}\right.$ is :
(1) differentiable at 0 but not continuous
(2) having second derivative at the origin
(3) continuous at the origin but not differentiable
(4) neither continuous nor differentiable at the origin
19. Index number for the base period is always taken as :
(1) 100
(2) 1000
(3) 10
(4) 1
20. The circular test is an extension of :
(1) the time reversal test
(2) the factor reversal test
(3) the unit test
(4) None of these
21. If P is the size of a population, F and M are the number of females and males respectively in the sample population, then the sex ratio is usually defined as :
(1) $\frac{F}{P} \times 1000$
(2) $\frac{M}{P} \times 1000$
(3) $\frac{F}{M} \times 1000$
(4) $\frac{M}{F} \times 1000$
22. The death rate obtained for a segment of a population is known as :
(1) Neonatal mortality rate
(2) Specific death rate
(3) Crude death rate
(4) Standardized death rate
23. The condition for time reversal test to hold for price index number is given by :
(1) $P_{01} \times P_{10}=1$
(2) $P_{01} \times P_{10}=0$
(3) $\frac{P_{01}}{P_{10}}=1$
(4) $P_{01}+P_{10}=1$
24. If the income elasticity of demand for a good is negative, it must be :
(1) a normal good
(2) a luxury good
(3) an inferior good
(4) an elastic good
25. Which index number is considered as ideal ?
(1) Laspeyre's index number
(2) Paasche's index number
(3) Marshall - Edgeworth's index number
(4) Fisher's index number
26. The formula $\frac{\sum_{i=1}^{n} p_{1 i} q_{1 i}}{\sum^{n}} \times 100$ is used to calculate :

$$
\sum_{i=1}^{n} p_{0 i} q_{1 i}
$$

(1) Paasche's price index
(2) Paasche's quantity index
(3) Laspeyre's price index
(4) Laspeyre's quantity index
19. NSSO stands for :
(1) National Sample Survey Organization
(2) National Sample Survey Office
(3) National Small Survey Office
(4) National Sample Service Organization

B
20. Crude rate of natural increase is equal to :
(1) Crude birth rate
(2) Crude death rate
(3) Crude birth rate + Crude death rate
(4) Crude birth rate - Crude death rate
21. If $b_{x y}=0.2$ and $b_{y x}=0.8$, then correlation coefficient between variables X and Y is :
(1) 0.16
(2) -0.16
(3) 0.4
(4) -0.4
22. The correct relationship between Arithmetic Mean (A.M.), Geometric Mean (G.M.) and Harmonic Mean (H. M.) is :
(1) A. M. \leq G.M. \leq H.M.
(2) A.M. \geq G.M. \geq H.M.
(3) G.M. \geq A.M. \geq H.M.
(4) G.M. \geq H.M. \geq A.M.
23. The average of $2 n$ natural numbers from 1 to $2 n$:
(1) $\frac{2 n+1}{2}$
(2) $\frac{n+1}{2}$
(3) $n(2 n+1)$
(4) $\frac{n(n+1)}{2}$
24. Sum of deviations taken from mean is :
(1) Minimum
(2) Maximum
(3) 0
(4) 1
25. If the observations recorded on five sampled items are $3,3,3,3,3$, the sample variance is :
(1) 3
(2) 2
(3) 1
(4) 0
26. Total number of possible outcomes of a random experiment is known as :
(1) Exhaustive events
(2) Mutually exclusive events
(3) Equally likely events
(4) Independent events
27. The variable 'Height' is an example of :
(1) Pseudo variable
(2) Discrete variable
(3) Continuous variable
(4) None of these
28. If ' A ' be an event, then $\mathrm{P}(\mathrm{A})$ lies between :
(1) $[0,1)$
(2) $[0,1]$
(3) $(0,1)$
(4) $(0,1]$
29. A bag contains one red ball, three white balls and three black balls. Two balls are drawn from the well shaked bag. The probability of both the balls being red is :
(1) $\frac{3}{7}$
(2) $\frac{2}{7}$
(3) $\frac{1}{7}$
(4) 0

B
30. If A and B are two events, then P (neither A nor B) is :
(1) $1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
(2) $1-\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(3) $P(A)+P(B)$
(4) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
31. Formulae in MS-Excel always begins with :
(1) $=$
(2) $\%$
(3) *
(4) \$
32. One 'nibble' is equal to :
(1) 4 bytes
(2) 8 bytes
(3) 4 bits
(4) 8 bits
33. If δ and E are central difference operator and shift operator respectively, then which one of the followings is true ?
(1) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$
(2) $\delta \equiv E^{1 / 2}-E^{-1 / 2}$
(3) $\delta \equiv E^{1 / 2}+E^{-1 / 2}$
(4) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}-E^{-1 / 2}\right)$
34. Newton's backward formula is used when the interpolating value lies :
(1) in the beginning of the series
(2) in the middle of the series
(3) at the end of the series
(4) None of these
35. The Newton-Raphson's method is also called :
(1) Methods of tangents
(2) Bisection method
(3) Intrapolation method
(4) Extrapolation method
36. The order of convergence of Regula-Falsi method is :
(1) 1.17
(2) 2.17
(3) 1.618
(4) 2.618
37. If E is shift operator and Δ and ∇ are forward and backward difference operators respectively, then :
(1) $\mathrm{E} \equiv 1-\Delta$
(2) $\mathrm{E} \equiv 1+\Delta$
(3) $\mathrm{E} \equiv 1+\nabla$
(4) $E \equiv 1-\nabla$
38. Secant method is also called :
(1) 2-Point method
(2) 3-Point method
(3) 4-Point method
(4) 5-Point method
39. If $f(x)=x^{2}+2 x+2$ and interval of differencing is unity, then $\Delta f(x)$ is equal to :
(1) $2 x-3$
(2) $2 x+3$
(3) $x-3$
(4) $x+3$

B
40. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) +1
(2) $\frac{-x_{2}}{x_{1}-x_{0}}$
(3) $\frac{x_{0}}{x_{2}-x_{1}}$
(4) -1
41. $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}$ is equal to :
(1) 1
(2) e
(3) e^{4}
(4) e^{2}
42. The improper Riemann integral $\int_{0}^{x} y^{-\frac{1}{2}} \cdot d y$, is :
(1) continuous in $[0, \infty)$
(2) continuous only in $(0, \infty)$
(3) discontinuous in $(0, \infty)$
(4) discontinuous only in $\left(\frac{1}{2}, \infty\right)$
43. The series $2+4+6+8+$ \qquad .
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
44. For function to be Reimann integral, function should be :
(1) unbounded over finite domain
(2) unbounded over infinite domain
(3) bounded over infinite domain
(4) bounded over finite domain
45. The sequence $<\frac{1}{3^{n}}>$ converges to:
(1) 0
(2) 1
(3) 2
(4) 3
46. Which of the following is not true :
(1) Interior of a set is an open set
(2) The intersection of an arbitrary family of closed set is not closed
(3) The union of a finite number of closed set is closed set
(4) Subset and superset of an open set may or may not be open
47. The optimal value of the objective function is attained at the point :
(1) On X-axis
(2) On Y-axis
(3) Corner point of the feasible region
(4) None of these
48. Any solution to a general LPP which satisfies the non-negative restrictions of the problem is called :
(1) unbounded solution
(2) feasible solution
(3) infeasible solution
(4) optimum solution
49. Which of the following method is not used to find an initial basis feasible solution to a transportation problem?
(1) North-West Corner Method
(2) Least Cost Method
(3) Vogel's Approximation Method
(4) Modified Distribution Method
50. In any simplex table, in the column corresponding to entering variable if all elements ≤ 0, then the solution will be :
(1) unbounded
(2) infeasible
(3) degenerate
(4) feasible
51. The order of differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=a \cdot \frac{d^{2} y}{d x}$ is :
(1) 2
(2) 3
(3) 1
(4) None of these
52. The degree of differential equation $y=x \cdot \frac{d y}{d x}+a \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
(1) 4
(2) 3
(3) 2
(4) 1
53. The solution of the differential equation $\frac{d y}{d x}=\frac{1-x}{y}$ represents :
(1) a family of circles centered at $(1,0)$
(2) a family of circles centered at $(0,0)$
(3) a family of straight lines with slope -1
(4) a family of straight lines with slope +1
54. The value of Wronskian $w\left(x, x^{2}, x^{3}\right)$ is :
(1) $2 x^{4}$
(2) $2 x^{3}$
(3) $2 x^{2}$
(4) $2 x$
55. The solution of $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$ is :
(1) $y=c_{1} e^{-x}+c_{2} e^{x}$
(2) $y=c_{1} e^{-2 x}+c_{2} e^{-x}$
(3) $y=c_{1} e^{-2 x}+c_{2} e^{x}$
(4) $y=c_{1} e^{-2 x}+c_{2} e^{2 x}$
56. The P.I of $\left(D^{2}+5 D+6\right) y=e^{x}$ is :
(1) e^{x}
(2) $\frac{e^{x}}{6}$
(3) $\frac{e^{x}}{10}$
(4) $\frac{e^{x}}{12}$
57. Integrating factor of $\frac{d y}{d x}=\frac{y}{x}-1$, is :
(1) e^{-x}
(2) $e^{-\frac{1}{x}}$
(3) $\frac{1}{x}$
(4) $\frac{-1}{x}$
58. The solution of $\frac{d x}{d y}+P x=Q$, where P, Q are functions of y only or constants :
(1) $x \cdot e^{\int P \cdot d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$
(2) $y \cdot e^{\int P \cdot d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(3) $x \cdot e^{\int P d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(4) $y \cdot e^{\int P d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$

B
59. The sequence $\{1,0,1,0,1,0, \ldots \ldots$.$\} is :$
(1) increasing sequence
(2) decreasing sequence
(3) monotone sequence
(4) None of these
60. The series $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$, is :
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
61. A necessary and sufficient condition for a basic feasible solution to be an optimum (maximum) is that (for all j) :
(1) $z_{j}-c_{j} \leq 0$
(2) $z_{j}-c_{j}=0$
(3) $z_{j}-c_{j} \geq 0$
(4) $z_{j}-c_{j}>0$ or $z_{j}-c_{j}<0$
62. In a balanced transportation problem with ' m ' sources and ' n ' destinations, the number of linearly independent constraints is :
(1) $m+n$
(2) $m-n$
(3) $m+n-1$
(4) $m+n+1$
63. The graphical method of LPP uses :
(1) objective function equation
(2) constraint equations
(3) both (1) and (2)
(4) None of these
64. The transportation model is basically a linear program that can be solved by :
(1) Game theory
(2) Simplex method
(3) Both (1) and (2)
(4) None of these
65. Which of the following is not a relational operator in C ?
(1) $<$
(2) $>$
(3) $<=$
(4) ++
66. Which of the following unit convert the data received from the user into a computer understandable format?
(1) Input unit
(2) Secondary storage
(3) Arithmetic and logic unit
(4) Output unit
67. Which of the following is not a type of Computer Code ?
(1) BCD
(2) EBC
(3) ASCII
(4) EBCDIC
68. Decimal equivalent of the binary number 101101 is :
(1) 42
(2) 43
(3) 44
(4) 45
69. Which of the following is the shortcut key to cut the selected content to the clipboard ?
(1) $\mathrm{Ctrl}+\mathrm{X}$
(2) $\mathrm{Ctrl}+\mathrm{N}$
(3) $\mathrm{Ctrl}+\mathrm{V}$
(4) $\mathrm{Ctrl}+\mathrm{C}$

B
70. Two binary numbers are added as given below :

the (e, f, g, h) is equal to :
(1) $(0,0,1,1)$
(2) $(1,0,0,1)$
(3) $(1,0,1,0)$
(4) $(0,0,1,0)$
71. If shoe size of the most of the people in a city is number 8 , which measure of central tendency does it represent?
(1) Mean
(2) Median
(3) Mode
(4) Harmonic mean
72. Mean deviation is a measure of :
(1) Location
(2) Dispersion
(3) Correlation
(4) Skewness
73. Ogives, for more than and less than type intersect at :
(1) Mean
(2) Median
(3) Mode
(4) Origin
74. If X is a random variable with its mean \bar{X}, then expression $E(X-\bar{X})^{2}$ represents :
(1) the variance of X
(2) second central moment
(3) third central moment
(4) both (1) and (2)
75. In case of positive skewed distribution, the relation between mean, median and mode is :
(1) Mean $>$ Median $>$ Mode
(2) Mean $>$ Mode $>$ Median
(3) Mode $>$ Median $>$ Mean
(4) Mean $=$ Mode $=$ Median
76. If the coefficient of kurtosis γ_{2} of a distribution is zero, the frequency curve is :
(1) Leptokurtic
(2) Mesokurtic
(3) Platykurtic
(4) Skewed
77. Range of multiple correlation coefficient is :
(1) -1 to +1
(2) -1 to 0
(3) 0 to +1
(4) 0 to ∞
78. The coefficient of correlation between X and Y series is zero, the two regression lines are :
(1) Parallel
(2) Coincident
(3) Perpendicular
(4) Both (1) and (2)
79. If X and Y are independent random variables, then correlation coefficient between X and Y is :
(1) 0
(2) +1
(3) -1
(4) 0.5
80. Two lines of regressions X on Y and Y on X, intersect at the point :
(1) $(0,0)$
(2) (X, Y)
(3) $(\bar{X}, 0)$
(4) (\bar{X}, \bar{Y})
81. The vectors $u=(6,2,3,4), v=(0,5,-3,1)$ and $w=(0,0,7,-2)$ are :
(1) Dependent
(2) Independent
(3) Data is insufficient
(4) None of these
82. Let a 4×4 matrix P have determinant 10 , then the determinant of matrix $-3 P$ is :
(1) -30
(2) 30
(3) -810
(4) 810
83. The eigen values of the matrix :

$$
A=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 4 & 0 & 1 \\
3 & 1 & 5 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

are :
(1) $3,2,3,4$
(2) $1,2,4,5$
(3) $1,2,3,5$
(4) $3,2,1,4$
84. Let $S=\{(1,2,3),(1,0,-1)\}$. The value of k for which the vector $(2,1, k)$ belongs to the linear span of S, is :
(1) 1
(2) 2
(3) 3
(4) 0
85. If ' A ' is a square matrix and A ' is its transpose, then $A+A^{\prime}$ is :
(1) Symmetric
(2) Skew-symmetric
(3) Hermition
(4) Skew-Harmition

PG-EE-June, 2023/(Statistics)(SET-X)/(B)
P. T. O.
86. The dimension of zero space is :
(1) 0
(2) 1
(3) 2
(4) 3
87. Which of the following is not true ?
(1) Every subset of a linearly independent set is linearly independent
(2) Every super set of a linearly dependent set is linearly independent
(3) Any set which contains the null vector 0 is linearly dependent
(4) None of these *
88. Any square matrix ' A ' is said to be Idempotent if :
(1) $A^{2}=0$
(2) $A^{2}=A$
(3) $A^{\mathrm{m}}=0$, if \exists a positive integer ' m '
(4) $A^{2}=\mathrm{I}$
89. Which of the following is true ?
(1) C is not a vector space over C
(2) C is not a vector space over R
(3) R is not a vector space over C
(4) Q is a vector space over R
90. Which of the following matrix satisfy $A^{2}-5 A=0$
(1) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(2) $\left[\begin{array}{cc}-1 & 0 \\ -2 & -3\end{array}\right]$
(3) $\left[\begin{array}{cc}0 & -10 \\ -5 & 0\end{array}\right]$
(4) $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
91. For the constants ' g ' and ' h ' $\mathrm{E}(g X+h)$ is :
(1) $\mathrm{gE}(X)$
(2) $g E(X)+h$
(3) $\mathrm{E}(X)$
(4) $g^{2} E(X)$
92. If X and Y are independent random variables with variances σ_{1}^{2} and σ_{2}^{2} respectively, the variance of $X+3 Y$ is :
(1) $\sigma_{1}^{2}+\sigma_{2}^{2}$
(2) $\sigma_{1}{ }^{2}+6 \sigma_{2}{ }^{2}$
(3) $\sigma_{1}^{2}+3 \sigma_{2}^{2}$
(4) $\sigma_{1}^{2}+9 \sigma_{2}^{2}$
93. If in a binomial distribution the mean is 4 and the variance is $\frac{4}{3}$, then the probability of success is :
(1) $\frac{1}{3}$
(2) $\frac{2}{3}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
94. If X is a Binomial variate with parameters ' n ' and ' p '. If $n=1$, the distribution of X reduces to :
(1) Poisson distribution
(2) Normal distribution
(3) Geometric distribution
(4) Bernoulli distribution
95. If the mean of a Poisson distribution is 5, then its standard deviation is :
(1) 5
(2) $\sqrt{5}$
(3) 10
(4) 0
96. The distribution for which mean is always greater than its variance is :
(1) Poisson distribution
(2) Binomial distribution
(3) Normal distribution
(4) None of these
97. If mode of the normal distribution is 10 , then its median is :
(1) 10
(2) 5
(3) 2
(4) 0
98. The mean and variance of a standardized variable are :
(1) $\mu=0=\sigma^{2}$
(2) $\mu=1, \sigma^{2}=0$
(3) $\mu=0, \sigma^{2}=1$
(4) $\mu=1=\sigma^{2}$
99. Two random variables X and Y are said to be independent if :
(1) $E(X, Y)=E(X)+E(Y)$
(2) $E(X \cdot Y)=E(X) \cdot E(Y)$
(3) $E(X, Y)=0$
(4) $E(X . Y)=-1$
100. If $X \sim \exp$ (7), the probability density function of X is :
(1) $7 e^{-X}$ for $X>0$
(2) $7 e^{-7 x}$ for $X>0$
(3) $e^{-7 x}$ for $X>0$
(4) $\frac{1}{7} e^{-7 X}$ for $X>0$

PG-EE-June, 2023/(Statistics)(SET-X)/(B)

\qquad
Max. Marks : 100
Total Questions

Name (in words) \qquad

Father's Name \qquad Date of Birth \qquad

Date of Examination \qquad
(Signature of the Candidate)
(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be
considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
9. A necessary and sufficient condition for a basic feasible solution to be an optimum (maximum) is that (for all j) :
(1) $z_{j}-c_{j} \leq 0$
(2) $z_{j}-c_{j}=0$
(3) $z_{j}-c_{j} \geq 0$
(4) $z_{j}-c_{j}>0$ or $z_{j}-c_{j}<0$
10. In a balanced transportation problem with ' m ' sources and ' n ' destinations, the number of linearly independent constraints is :
(1) $m+n$
(2) $m-n$
(3) $m+n-1$
(4) $m+n+1$
11. The graphical method of LPP uses :
(1) objective function equation
(2) constraint equations
(3) both (1) and (2)
(4) None of these
12. The transportation model is basically a linear program that can be solved by :
(1) Game theory
(2) Simplex method
(3) Both (1) and (2)
(4) None of these
13. Which of the following is not a relational operator in C?
(1) $<$
(2) $>$
(3) $<=$
(4) ++
14. Which of the following unit convert the data received from the user into a computer understandable format?
(1) Input unit
(2) Secondary storage
(3) Arithmetic and logic unit
(4) Output unit
15. Which of the following is not a type of Computer Code ?
(1) BCD
(2) EBC
(3) ASCII
(4) EBCDIC
16. Decimal equivalent of the binary number 101101 is :
(1) 42
(2) 43
(3) 44
(4) 45
17. Which of the following is the shortcut key to cut the selected content to the clipboard ?
(1) $\mathrm{Ctrl}+\mathrm{X}$
(2) $\mathrm{Ctrl}+\mathrm{N}$
(3) $\mathrm{Ctrl}+\mathrm{V}$
(4) $\mathrm{Ctrl}+\mathrm{C}$
18. Two binary numbers are added as given below :

1	f	1	0
+	e	0	1
1	1	h	1

the (e, f, g, h) is equal to :
(1) $(0,0,1,1)$
(2) $(1,0,0,1)$
(3) $(1,0,1,0)$
(4) $(0,0,1,0)$

C
11. The order of differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=a \cdot \frac{d^{2} y}{d x}$ is :
(1) 2
(2) 3
(3) 1
(4) None of these
12. The degree of differential equation $y=x \cdot \frac{d y}{d x}+a \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
(1) 4
(2) 3
(3) 2
(4) 1
13. The solution of the differential equation $\frac{d y}{d x}=\frac{1-x}{y}$ represents :
(1) a family of circles centered at $(1,0)$
(2) a family of circles centered at $(0,0)$
(3) a family of straight lines with slope -1
(4) a family of straight lines with slope +1
14. The value of Wronskian $w\left(x, x^{2}, x^{3}\right)$ is:
(1) $2 x^{4}$
(2) $2 x^{3}$
(3) $2 x^{2}$
(4) $2 x$
15. The solution of $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$ is :
(1) $y=c_{1} e^{-x}+c_{2} e^{x}$
(2) $y=c_{1} e^{-2 x}+c_{2} e^{-x}$
(3) $y=c_{1} e^{-2 x}+c_{2} e^{x}$
(4) $y=c_{1} e^{-2 x}+c_{2} e^{2 x}$
16. The P.I of $\left(D^{2}+5 D+6\right) y=e^{x}$ is :
(1) e^{x}
(2) $\frac{e^{x}}{6}$
(3) $\frac{e^{x}}{10}$
(4) $\frac{e^{x}}{12}$
17. Integrating factor of $\frac{d y}{d x}=\frac{y}{x}-1$, is :
(1) e^{-x}
(2) $e^{-\frac{1}{x}}$
(3) $\frac{1}{x}$
(4) $\frac{-1}{x}$
18. The solution of $\frac{d x}{d y}+P x=Q$, where P, Q are functions of y only or constants :
(1) $x \cdot e^{\int P \cdot d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$
(2) $y \cdot e^{\int P \cdot d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(3) $x \cdot e^{\int P d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(4) $y \cdot e^{\int P d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$
19. The sequence $\{1,0,1,0,1,0, \ldots \ldots$.$\} is :$
(1) increasing sequence
(2) decreasing sequence
(3) monotone sequence
(4) None of these

C
20. The series $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$, is :
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
21. The vectors $u=(6,2,3,4), v=(0,5,-3,1)$ and $w=(0,0,7,-2)$ are :
(1) Dependent
(2) Independent
(3) Data is insufficient
(4) None of these
22. Let a 4×4 matrix P have determinant 10 , then the determinant of matrix $-3 P$ is :
(1) -30
(2) 30
(3) -810
(4) 810
23. The eigen values of the matrix :

$$
A=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 4 & 0 & 1 \\
3 & 1 & 5 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

are :
(1) $3,2,3,4$
(2) $1,2,4,5$
(3) $1,2,3,5$
(4) $3,2,1,4$
24. Let $S=\{(1,2,3),(1,0,-1)\}$. The value of k for which the vector $(2,1, k)$ belongs to the linear span of S, is :
(1) 1
(2) 2
(3) 3
(4) 0
25. If ' A ' is a square matrix and A ' is its transpose, then $A+A$ ' is :
(1) Symmetric
(2) Skew-symmetric
(3) Hermition
(4) Skew-Harmition
26. The dimension of zero space is :
(1) 0
(2) 1
(3) 2
(4) 3
27. Which of the following is not true ?
(1) Every subset of a linearly independent set is linearly independent
(2) Every super set of a linearly dependent set is linearly independent
(3) Any set which contains the null vector 0 is linearly dependent
(4) None of these
28. Any square matrix ' A ' is said to be Idempotent if :
(1) $A^{2}=0$
(2) $A^{2}=A$
(3) $A^{\mathrm{m}}=0$, if \exists a positive integer ${ }^{\prime} m$ '
(4) $A^{2}=\mathrm{I}$
29. Which of the following is true ?
(1) C is not a vector space over C
(2) C is not a vector space over R
(3) R is not a vector space over C
(4) Q is a vector space over R
30. Which of the following matrix satisfy $A^{2}-5 A=0$
(1) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(2) $\left[\begin{array}{cc}-1 & 0 \\ -2 & -3\end{array}\right]$
(3) $\left[\begin{array}{cc}0 & -10 \\ -5 & 0\end{array}\right]$
(4) $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
31. Index number for the base period is always taken as :
(1) 100
(2) 1000
(3) 10
(4) 1

C
32. The circular test is an extension of :
(1) the time reversal test
(2) the factor reversal test
(3) the unit test
(4) None of these
33. If P is the size of a population, F and M are the number of females and males respectively in the sample population, then the sex ratio is usually defined as :
(1) $\frac{F}{P} \times 1000$
(2) $\frac{M}{P} \times 1000$
(3) $\frac{F}{M} \times 1000$
(4) $\frac{M}{F} \times 1000$
34. The death rate obtained for a segment of a population is known as :
(1) Neonatal mortality rate
(2) Specific death rate
(3) Crude death rate
(4) Standardized death rate
35. The condition for time reversal test to hold for price index number is given by :
(1) $P_{01} \times P_{10}=1$
(2) $P_{01} \times P_{10}=0$
(3) $\frac{P_{01}}{P_{10}}=1$
(4) $P_{01}+P_{10}=1$
36. If the income elasticity of demand for a good is negative, it must be :
(1) a normal good
(2) a luxury good
(3) an inferior good
(4) an elastic good
37. Which index number is considered as ideal ?
(1) Laspeyre's index number
(2) Paasche's index number
(3) Marshall - Edgeworth's index number
(4) Fisher's index number
38. The formula $\frac{\sum_{i=1}^{n} p_{1 i} q_{1 i}}{\sum_{i=1}^{n} p_{0 i} q_{1 i}} \times 100$ is used to calculate :
(1) Paasche's price index
(2) Paasche's quantity index
(3) Laspeyre's price index
(4) Laspeyre's quantity index
39. NSSO stands for :
(1) National Sample Survey Organization
(2) National Sample Survey Office
(3) National Small Survey Office
(4) National Sample Service Organization
40. Crude rate of natural increase is equal to :
(1) Crude birth rate
(2) Crude death rate
(3) Crude birth rate + Crude death rate
(4) Crude birth rate - Crude death rate

C

41. If shoe size of the most of the people in a city is number 8 , which measure of central tendency does it represent?
(1) Mean
(2) Median
(3) Mode
(4) Harmonic mean
42. Mean deviation is a measure of :
(1) Location
(2) Dispersion
(3) Correlation
(4) Skewness
43. Ogives, for more than and less than type intersect at :
(1) Mean
(2) Median
(3) Mode
(4) Origin
44. If X is a random variable with its mean \bar{X}, then expression $E(X-\bar{X})^{2}$ represents :
(1) the variance of X
(2) second central moment
(3) third central moment
(4) both (1) and (2)
45. In case of positive skewed distribution, the relation between mean, median and mode is :
(1) Mean $>$ Median $>$ Mode
(2) Mean $>$ Mode $>$ Median
(3) Mode $>$ Median $>$ Mean
(4) Mean $=$ Mode $=$ Median
46. If the coefficient of kurtosis γ_{2} of a distribution is zero, the frequency curve is :
(1) Leptokurtic
(2) Mesokurtic
(3) Platykurtic
(4) Skewed
47. Range of multiple correlation coefficient is :
(1) -1 to +1
(2) -1 to 0
(3) 0 to +1
(4) 0 to ∞
48. The coefficient of correlation between X and Y series is zero, the two regression lines are :
(1) Parallel
(2) Coincident
(3) Perpendicular
(4) Both (1) and (2)
49. If X and Y are independent random variables, then correlation coefficient between X
and Y is:
(1) 0
(2) +1
(3) -1
(4) 0.5
50. Two lines of regressions X on Y and Y on X, intersect at the point :
(1) $(0,0)$
(2) (X, Y)
(3) $(\bar{X}, 0)$
(4) (\bar{X}, \bar{Y})
51. $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}$ is equal to :
(1) 1
(2) e
(3) e^{4}
(4) e^{2}
52. The improper Riemann integral $\int_{0}^{x} y^{-\frac{1}{2}} \cdot d y$, is :
(1) continuous in $[0, \infty)$
(2) continuous only in $(0, \infty)$
(3) discontinuous in $(0, \infty)$
(4) discontinuous only in $\left(\frac{1}{2}, \infty\right)$
53. The series $2+4+6+8+\ldots \ldots$. :
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
54. For function to be Reimann integral, function should be :
(1) unbounded over finite domain
(2) unbounded over infinite domain
(3) bounded over infinite domain
(4) bounded over finite domain
55. The sequence $<\frac{1}{3^{n}}>$ converges to :
(1) 0
(2) 1
(3) 2
(4) 3
56. Which of the following is not true :
(1) Interior of a set is an open set
(2) The intersection of an arbitrary family of closed set is not closed
(3) The union of a finite number of closed set is closed set
(4) Subset and superset of an open set may or may not be open
57. The optimal value of the objective function is attained at the point :
(1) On X-axis
(2) On Y-axis
(3) Corner point of the feasible region
(4) None of these
58. Any solution to a general LPP which satisfies the non-negative restrictions of the problem is called :
(1) unbounded solution
(2) feasible solution *
(3) infeasible solution
(4) optimum solution
59. Which of the following method is not used to find an initial basis feasible solution to a transportation problem?
(1) North-West Corner Method
(2) Least Cost Method
(3) Vogel's Approximation Method
(4) Modified Distribution Method
60. In any simplex table, in the column corresponding to entering variable if all elements ≤ 0, then the solution will be :
(1) unbounded
(2) infeasible
(3) degenerate
(4) feasible
61. If $b_{x y}=0.2$ and $b_{y x}=0.8$, then correlation coefficient between variables X and Y is :
(1) 0.16
(2) -0.16
(3) 0.4
(4) -0.4
62. The correct relationship between Arithmetic Mean (A.M.), Geometric Mean (G.M.) and Harmonic Mean (H. M.) is :
(1) A. M. \leq G.M. \leq H.M.
(2) A.M. \geq G.M. \geq H.M.
(3) G.M. \geq A.M. \geq H.M.
(4) G.M. \geq H.M. \geq A.M.
63. The average of $2 n$ natural numbers from 1 to $2 n$:
(1) $\frac{2 n+1}{2}$
(2) $\frac{n+1}{2}$
(3) $n(2 n+1)$
(4) $\frac{n(n+1)}{2}$
64. Sum of deviations taken from mean is :
(1) Minimum
(2) Maximum
(3) 0
(4) 1
65. If the observations recorded on five sampled items are $3,3,3,3,3$, the sample variance is :
(1) 3
(2) 2
(3) 1
(4) 0
66. Total number of possible outcomes of a random experiment is known as :
(1) Exhaustive events
(2) Mutually exclusive events
(3) Equally likely events
(4) Independent events
67. The variable 'Height' is an example of :
(1) Pseudo variable
(2) Discrete variable
(3) Continuous variable
(4) None of these
68. If ' A ' be an event, then $\mathrm{P}(\mathrm{A})$ lies between :
(1) $[0,1)$
(2) $[0,1]$
(3) $(0,1)$
(4) $(0,1]$
69. A bag contains one red ball, three white balls and three black balls. Two balls are drawn from the well shaked bag. The probability of both the balls being red is :
(1) $\frac{3}{7}$
(2) $\frac{2}{7}$
(3) $\frac{1}{7}$
(4) 0
70. If A and B are two events, then P (neither A nor B) is :
(1) $1-P(A \cup B)$
(2) $1-\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(3) $P(A)+P(B)$
(4) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
71. For the constants ' g ' and ' h ' $\mathrm{E}(g X+h)$ is :
(1) $\mathrm{gE}(X)$
(2) $g E(X)+h$
(3) $\mathrm{E}(X)$
(4) $g^{2} E(X)$
72. If X and Y are independent random variables with variances σ_{1}^{2} and σ_{2}^{2} respectively, the variance of $X+3 Y$ is :
(1) $\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}$
(2) $\sigma_{1}{ }^{2}+6 \sigma_{2}{ }^{2}$
(3) $\sigma_{1}{ }^{2}+3 \sigma_{2}{ }^{2}$
(4) $\sigma_{1}{ }^{2}+9 \sigma_{2}{ }^{2}$

C
73. If in a binomial distribution the mean is 4 and the variance is $\frac{4}{3}$, then the probability of success is :
(1) $\frac{1}{3}$
(2) $\frac{2}{3}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
74. If X is a Binomial variate with parameters ' n ' and ' p '. If $n=1$, the distribution of X redüces to :
(1) Poisson distribution
(2) Normal distribution
(3) Geometric distribution
(4) Bernoulli distribution
75. If the mean of a Poisson distribution is 5 , then its standard deviation is :
(1) 5
(2) $\sqrt{5}$
(3) 10
(4) 0
76. The distribution for which mean is always greater than its variance is :
(1) Poisson distribution
(2) Binomial distribution
(3) Normal distribution
(4) None of these
77. If mode of the normal distribution is 10 , then its median is :
(1) 10
(2) 5
(3) 2
(4) 0
78. The mean and variance of a standardized variable are :
(1) $\mu=0=\sigma^{2}$
(2) $\mu=1, \sigma^{2}=0$
(3) $\mu=0, \sigma^{2}=1$
(4) $\mu=1=\sigma^{2}$
79. Two random variables X and Y are said to be independent if :
(1) $E(X . Y)=E(X)+E(Y)$
(2) $E(X . Y)=E(X) \cdot E(Y)$
(3) $E(X, Y)=0$
(4) $E(X . Y)=-1$
80. If $X \sim \exp$ (7), the probability density function of X is :
(1) $7 e^{-X}$ for $X>0$
(2) $7 e^{-7 X}$ for $X>0$
(3) $e^{-7 x}$ for $X>0$
(4) $\frac{1}{7} e^{-7 X}$ for $X>0$
81. $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ is equal to :
(1) 0
(2) 3
(3) $\frac{3}{2}$
(4) $-\frac{1}{3}$
82. $\operatorname{Lim}_{x \rightarrow 0} \frac{4 x^{5}+9 x+7}{3 x^{6}+x^{3}+1}$ is equal to :
(1) 4
(2) 0
(3) 5
(4) 6

C
83. Consider $f(x)=\left\{\begin{array}{ll}\frac{|x|}{x} & ; \\ 1 \neq 0 \\ 1 & ; \quad x=0\end{array}\right.$, then :
(1) $f(x)$ is continuous at the origin
(2) $f(x)$ is not continuous at the origin
(3) $f(x)$ is differentiable at origin
(4) None of these
84. The $n^{\text {th }}$ derivative of $e^{2-3 x}$ is :
(1) $3^{n} e^{2-3 x}$
(2) $(-3)^{n} e^{2-3 x}$
(3) $\frac{1}{3^{n}} e^{2-3 x}$
(4) $\frac{1}{(-3)^{n}} e^{2-3 x}$
85. $\operatorname{Lim}_{n \rightarrow \infty}(n)^{1 / n}$ equal to :
(1) ∞
(2) 0
(3) 1
(4) does not exist
86. The value of $\int_{0}^{\pi / 2} \sin ^{2} x . d x$ is :
(1) 0
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$
87. The minimum value of $|z-2|+|z-3|$ is: (where z is real number) :
(1) 0
(2) 1
(3) 2
(4) 3
88. If u be a homogeneous function of degree ' n ' in x and y, then :
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=n u$
(2) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$
(3) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=(n-1) u$
(4) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=(n-1) u$
89. The value of $\int_{0}^{1} x e^{x} \cdot d x$ is :
(1) 1
(2) 2
(3) 3
(4) 0
90. The function $f(x)=\left\{\begin{array}{cll}x \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x=0\end{array}\right.$ is :
(1) differentiable at 0 but not continuous
(2) having second derivative at the origin
(3) continuous at the origin but not differentiable
(4) neither continuous nor differentiable at the origin
91. Formulae in MS-Excel always begins with :
(1) $=$
(2) $\%$
(3) *
(4) $\$$
92. One 'nibble' is equal to :
(1) 4 bytes
(2) 8 bytes
(3) 4 bits
(4) 8 bits
93. If δ and E are central difference operator and shift operator respectively, then which one of the followings is true ?
(1) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$
(2) $\delta \equiv E^{1 / 2}-E^{-1 / 2}$
(3) $\delta \equiv E^{1 / 2}+E^{-1 / 2}$
(4) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}-E^{-1 / 2}\right)$
94. Newton's backward formula is used when the interpolating value lies:
(1) in the beginning of the series
(2) in the middle of the series
(3) at the end of the series
(4) None of these
95. The Newton-Raphson's method is also called :
(1) Methods of tangents
(2) Bisection method
(3) Intrapolation method
(4) Extrapolation method
96. The order of convergence of Regula-Falsi method is :
(1) 1.17
(2) 2.17
(3) 1.618
(4) 2.618
97. If E is shift operator and Δ and ∇ are forward and backward difference operators respectively, then :
(1) $\mathrm{E} \equiv 1-\Delta$
(2) $\mathrm{E} \equiv 1+\Delta$
(3) $\mathrm{E} \equiv 1+\nabla$
(4) $E \equiv 1-\nabla$
98. Secant method is also called :
(1) 2-Point method
(2) 3-Point method
(3) 4-Point method
(4) 5-Point method
99. If $f(x)=x^{2}+2 x+2$ and interval of differencing is unity, then $\Delta f(x)$ is equal to :
(1) $2 x-3$
(2) $2 x+3$
(3) $x-3$
(4) $x+3$
100. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) +1
(2) $\frac{-x_{2}}{x_{1}-x_{0}}$
(3) $\frac{x_{0}}{x_{2}-x_{1}}$
(4) -1
\qquad
Name \qquad Date of Birth \qquad
Father's Name \qquad Mother's Name \qquad
Date of Examination \qquad

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilatoi concerned before leaving the Examination Hall, failing which a case of use of unfair means / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
[^0]
D

1. If $b_{x y}=0.2$ and $b_{y x}=0.8$, then correlation coefficient between variables X and Y is :
(1) 0.16
(2) -0.16
(3) 0.4
(4) -0.4
2. The correct relationship between Arithmetic Mean (A.M.), Geometric Mean (G.M.) and Harmonic Mean (H. M.) is :
(1) A. M. \leq G.M. \leq H.M.
(2) A.M. \geq G.M. \geq H.M.
(3) G.M. \geq A.M. \geq H.M.
(4) G.M. \geq H.M. \geq A.M.
3. The average of $2 n$ natural numbers from 1 to $2 n$:
(1) $\frac{2 n+1}{2}$
(2) $\frac{n+1}{2}$
(3) $n(2 n+1)$
(4) $\frac{n(n+1)}{2}$
4. Sum of deviations taken from mean is :
(1) Minimum
(2) Maximum
(3) 0
(4) 1
5. If the observations recorded on five sampled items are $3,3,3,3,3$, the sample variance
is :
(1) 3
(2) 2
(3) 1
(4) 0
6. Total number of possible outcomes of a random experiment is known as :
(1) Exhaustive events
(2) Mutually exclusive events
(3) Equally likely events
(4) Independent events
7. The variable 'Height' is an example of :
(1) Pseudo variable
(2) Discrete variable
(3) Continuous variable
(4) None of these
8. If ' A ' be an event, then $\mathrm{P}(\mathrm{A})$ lies between :
(1) $[0,1)$
(2) $[0,1]$
(3) $(0,1)$
(4) $(0,1]$
9. A bag contains one red ball, three white balls and three black balls. Two balls are drawn from the well shaked bag. The probability of both the balls being red is :
(1) $\frac{3}{7}$
(2) $\frac{2}{7}$
(3) $\frac{1}{7}$
(4) 0
10. If A and B are two events, then P (neither A nor B) is :
(1) $1-P(A \cup B)$
(2) $1-\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(3) $P(A)+P(B)$
(4) $P(A)+P(B)-P(A \cap B)$
11. Formulae in MS-Excel always begins with :
(1) $=$
(2) $\%$
(3) *
(4) $\$$
12. One 'nibble' is equal to :
(1) 4 bytes
(2) 8 bytes
(3) 4 bits
(4) 8 bits

D
13. If δ and E are central difference operator and shift operator respectively, then which one of the followings is true ?
(1) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$
(2) $\delta \equiv E^{1 / 2}-E^{-1 / 2}$
(3) $\delta \equiv E^{1 / 2}+E^{-1 / 2}$
(4) $\delta \equiv \frac{1}{2}\left(E^{1 / 2}-E^{-1 / 2}\right)$
14. Newton's backward formula is used when the interpolating value lies :
(1) in the beginning of the series
(2) in the middle of the series
(3) at the end of the series
(4) None of these
15. The Newton-Raphson's method is also called :
(1) Methods of tangents
(2) Bisection method
(3) Intrapolation method
(4) Extrapolation method
16. The order of convergence of Regula-Falsi method is :
(1) 1.17
(2) 2.17
(3) 1.618
(4) 2.618
17. If E is shift operator and Δ and ∇ are forward and backward difference operators respectively, then :
(1) $\mathrm{E} \equiv 1-\Delta$
(2) $\mathrm{E} \equiv 1+\Delta$
(3) $\mathrm{E} \equiv 1+\nabla$
(4) $E \equiv 1-\nabla$
18. Secant method is also called :
(1) 2 - Point method
(2) 3-Point method
(3) 4-Point method
(4) 5-Point method
19. If $f(x)=x^{2}+2 x+2$ and interval of differencing is unity, then $\Delta f(x)$ is equal to :
(1) $2 x-3$
(2) $2 x+3$
(3) $x-3$
(4) $x+3$
20. If $f(x)=x^{2}$, then the second order divided difference for the points x_{0}, x_{1}, x_{2} will be :
(1) +1
(2) $\frac{-x_{2}}{x_{1}-x_{0}}$
(3) $\frac{x_{0}}{x_{2}-x_{1}}$
(4) -1
21. $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}$ is equal to :
(1) 1
(2) e
(3) e^{4}
(4) e^{2}

D
22. The improper Riemann integral $\int_{0}^{x} y^{-\frac{1}{2}} \cdot d y$, is :
(1) continuous in $[0, \infty)$
(2) continuous only in $(0, \infty)$
(3) discontinuous in $(0, \infty)$
(4) discontinuous only in $\left(\frac{1}{2}, \infty\right)$
23. The series $2+4+6+8+$ \qquad .
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
24. For function to be Reimann integral, function should be :
(1) unbounded over finite domain
(2) unbounded over infinite domain
(3) bounded over infinite domain
(4) bounded over finite domain
25. The sequence $\left\langle\frac{1}{3^{n}}\right\rangle$ converges to :
(1) 0
(2) 1
(3) 2
(4) 3
26. Which of the following is not true :
(1) Interior of a set is an open set
(2) The intersection of an arbitrary family of closed set is not closed
(3) The union of a finite number of closed set is closed set
(4) Subset and superset of an open set may or may not be open
27. The optimal value of the objective function is attained at the point :
(1) On X-axis
(2) On Y-axis
(3) Corner point of the feasible region
(4) None of these
28. Any solution to a general LPP which satisfies the non-negative restrictions of the problem is called :
(1) unbounded solution
(2) feasible solution
(3) infeasible solution
(4) optimum solution
29. Which of the following method is not used to find an initial basis feasible solution to a transportation problem?
(1) North-West Corner Method
(2) Least Cost Method
(3) Vogel's Approximation Method
(4) Modified Distribution Method
30. In any simplex table, in the column corresponding to entering variable if all elements ≤ 0, then the solution will be :
(1) unbounded
(2) infeasible
(3) degenerate
(4) feasible
31. $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ is equal to :
(1) 0
(2) 3
(3) $\frac{3}{2}$
(4) $-\frac{1}{3}$

D
32. $\operatorname{Lim}_{x \rightarrow 0} \frac{4 x^{5}+9 x+7}{3 x^{6}+x^{3}+1}$ is equal to :
(1) 4
(2) 0
(3) 5
(4) 6
33. Consider $f(x)=\left\{\begin{array}{lll}\frac{|x|}{x} & ; & x \neq 0 \\ 1 & ; & x=0\end{array}\right.$, then :
(1) $f(x)$ is continuous at the origin
(2) $f(x)$ is not continuous at the origin
(3) $f(x)$ is differentiable at origin
(4) None of these
34. The $n^{\text {th }}$ derivative of $e^{2-3 x}$ is :
(1) $3^{n} e^{2-3 x}$
(2) $(-3)^{n} e^{2-3 x}$
(3) $\frac{1}{3^{n}} e^{2-3 x}$
(4) $\frac{1}{(-3)^{n}} e^{2-3 x}$
35. $\operatorname{Lim}_{n \rightarrow \infty}(n)^{1 / n}$ equal to :
(1) ∞
(2) 0
(3) 1
(4) does not exist
36. The value of $\int_{0}^{\pi / 2} \sin ^{2} x . d x$ is :
(1) 0
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{4}$
37. The minimum value of $|z-2|+|z-3|$ is : (where z is real number) :
(1) 0
(2) 1
(3) 2
(4) 3
38. If u be a homogeneous function of degree ' n ' in x and y, then :
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=n u$
(2) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$
(3) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=(n-1) u$
(4) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=(n-1) u$
39. The value of $\int_{0}^{1} x e^{x} \cdot d x$ is :
(1) 1
(2) 2
(3) 3
(4) 0
40. The function $f(x)=\left\{\begin{array}{cll}x \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x=0\end{array}\right.$ is :
(1) differentiable at 0 but not continuous
(2) having second derivative at the origin
(3) continuous at the origin but not differentiable
(4) neither continuous nor differentiable at the origin
41. Index number for the base period is always taken as :
(1) 100
(2) 1000
(3) 10
(4) 1
42. The circular test is an extension of :
(1) the time reversal test
(2) the factor reversal test
(3) the unit test
(4) None of these
43. If P is the size of a population, F and M are the number of females and males respectively in the sample population, then the sex ratio is usually defined as :
(1) $\frac{F}{P} \times 1000$
(2) $\frac{M}{P} \times 1000$
(3) $\frac{F}{M} \times 1000$
(4) $\frac{M}{F} \times 1000$
44. The death rate obtained for a segment of a population is known as :
(1) Neonatal mortality rate
(2) Specific death rate
(3) Crude death rate
(4) Standardized death rate
45. The condition for time reversal test to hold for price index number is given by :
(1) $P_{01} \times P_{10}=1$
(2) $P_{01} \times P_{10}=0$
(3) $\frac{P_{01}}{P_{10}}=1$
(4) $P_{01}+P_{10}=1$
46. If the income elasticity of demand for a good is negative, it must be :
(1) a normal good
(2) a luxury good
(3) an inferior good
(4) an elastic good
47. Which index number is considered as ideal ?
(1) Laspeyre's index number
(2) Paasche's index number
(3) Marshall - Edgeworth's index number
(4) Fisher's index number
48. The formula $\frac{\sum_{i=1}^{n} p_{1 i} \dot{q}_{1 i}}{\sum_{i=1}^{n} p_{0 i} q_{1 i}} \times 100$ is used to calculate :
(1) Paasche's price index
(2) Paasche's quantity index
(3) Laspeyre's price index
(4) Laspeyre's quantity index
49. NSSO stands for :
(1) National Sample Survey Organization
(2) National Sample Survey Office
(3) National Small Survey Office
(4) National Sample Service Organization
50. Crude rate of natural increase is equal to :
(1) Crude birth rate
(2) Crude death rate
(3) Crude birth rate + Crude death rate
(4) Crude birth rate - Crude death rate
51. If shoe size of the most of the people in a city is number 8 , which measure of central tendency does it represent?
(1) Mean
(2) Median
(3) Mode
(4) Harmonic mean
52. Mean deviation is a measure of :
(1) Location
(2) Dispersion
(3) Correlation
(4) Skewness
53. Ogives, for more than and less than type intersect at :
(1) Mean
(2) Median
(3) Mode
(4) Origin
54. If X is a random variable with its mean \bar{X}, then expression $E(X-\bar{X})^{2}$ represents :
(1) the variance of X
(2) second central moment
(3) third central moment
(4) both (1) and (2)
55. In case of positive skewed distribution, the relation between mean, median and mode is :
(1) Mean $>$ Median $>$ Mode
(2) Mean $>$ Mode $>$ Median
(3) Mode $>$ Median $>$ Mean
(4) Mean $=$ Mode $=$ Median
56. If the coefficient of kurtosis γ_{2} of a distribution is zero, the frequency curve is :
(1) Leptokurtic
(2) Mesokurtic
(3) Platykurtic
(4) Skewed
57. Range of multiple correlation coefficient is :
(1) -1 to +1
(2) -1 to 0
(3) 0 to +1
(4) 0 to ∞
58. The coefficient of correlation between X and Y series is zero, the two regression lines are :
(1) Parallel
(2) Coincident
(3) Perpendicular
(4) Both (1) and (2)
59. If X and Y are independent random variables, then correlation coefficient between X and Y is :
(1) 0
(2) +1
(3) -1
(4) 0.5
60. Two lines of regressions X on Y and Y on X, intersect at the point :
(1) $(0,0)$
(2) (X, Y)
(3) $(\bar{X}, 0)$
(4) (\bar{X}, \bar{Y})
61. For the constants ' g ' and ' h ' $\mathrm{E}(g X+h)$ is :
(1) $\mathrm{gE}(X)$
(2) $g E(X)+h$
(3) $\mathrm{E}(X)$
(4) $g^{2} \mathrm{E}(X)$
62. If X and Y are independent random variables with variances σ_{1}^{2} and σ_{2}^{2} respectively, the variance of $X+3 Y$ is :
(1) $\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}$
(2) $\sigma_{1}^{2}+6 \sigma_{2}{ }^{2}$
(3) $\sigma_{1}{ }^{2}+3 \sigma_{2}{ }^{2}$
(4) $\sigma_{1}{ }^{2}+9 \sigma_{2}{ }^{2}$
63. If in a binomial distribution the mean is 4 and the variance is $\frac{4}{3}$, then the probability of success is :
(1) $\frac{1}{3}$
(2) $\frac{2}{3}$
(3) $\frac{1}{4}$
(4) $\frac{3}{4}$
64. If X is a Binomial variate with parameters ' n ' and ' p '. If $n=1$, the distribution of X reduces to :
(1) Poisson distribution
(2) Normal distribution
(3) Geometric distribution
(4) Bernoulli distribution
65. If the mean of a Poisson distribution is 5, then its standard deviation is :
(1) 5
(2) $\sqrt{5}$
(3) 10
(4) 0
66. The distribution for which mean is always greater than its variance is :
(1) Poisson distribution
(2) Binomial distribution
(3) Normal distribution
(4) None of these
67. If mode of the normal distribution is 10 , then its median is :
(1) 10
(2) 5
(3) 2
(4) 0
68. The mean and variance of a standardized variable are :
(1) $\mu=0=\sigma^{2}$
(2) $\mu=1, \sigma^{2}=0$
(3) $\mu=0, \sigma^{2}=1$
(4) $\mu=1=\sigma^{2}$
69. Two random variables X and Y are said to be independent if :
(1) $E(X . Y)=E(X)+E(Y)$
(2) $E(X . Y)=E(X) \cdot E(Y)$
(3) $E(X . Y)=0$
(4) $E(X . Y)=-1$
70. If $X \sim \exp$ (7), the probability density function of X is :
(1) $7 e^{-X}$ for $X>0$
(2) $7 e^{-7 X}$ for $X>0$
(3) $e^{-7 X}$ for $X>0$
(4) $\frac{1}{7} e^{-7 X}$ for $X>0$
71. A necessary and sufficient condition for a basic feasible solution to be an optimum (maximum) is that (for all j) :
(1) $z_{j}-c_{j} \leq 0$
(2) $z_{j}-c_{j}=0$
(3) $z_{j}-c_{j} \geq 0$
(4) $z_{j}-c_{j}>0$ or $z_{j}-c_{j}<0$
72. In a balanced transportation problem with ' m ' sources and ' n ' destinations, the number of linearly independent constraints is :
(1) $m+n$
(2) $m-n$
(3) $m+n-1$
(4) $m+n+1$

D
73. The graphical method of LPP uses :
(1) objective function equation
(2) constraint equations
(3) both (1) and (2)
(4) None of these
74. The transportation model is basically a linear program that can be solved by :
(1) Game theory
(2) Simplex method
(3) Both (1) and (2)
(4) None of these
75. Which of the following is not a relational operator in C ?
(1) $<$
(2) $>$
(3) $<=$
(4) ++
76. Which of the following unit convert the data received from the user into a computer understandable format?
(1) Input unit
(2) Secondary storage
(3) Arithmetic and logic unit
(4) Output unit
77. Which of the following is not a type of Computer Code ?
(1) BCD
(2) EBC
(3) ASCII
(4) EBCDIC
78. Decimal equivalent of the binary number 101101 is :
(1) 42
(2) 43
(3) 44
(4) 45
79. Which of the following is the shortcut key to cut the selected content to the clipboard ?
(1) $\mathrm{Ctrl}+\mathrm{X}$
(2) $\mathrm{Ctrl}+\mathrm{N}$
(3) $\mathrm{Ctrl}+\mathrm{V}$
(4) $\mathrm{Ctrl}+\mathrm{C}$
80. Two binary numbers are added as given below :

$+$| 1 | f | 1 | 0 |
| :--- | :--- | :--- | :--- |
| + | 0 | 1 | g |
| 1 | 1 | h | 1 |

the (e, f, g, h) is equal to :
(1) $(0,0,1,1)$
(2) $(1,0,0,1)$
(3) $(1,0,1,0)$
(4) $(0,0,1,0)$
81. The order of differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=a \cdot \frac{d^{2} y}{d x}$ is :
(1) 2
(2) 3
(3) 1
(4) None of these
82. The degree of differential equation $y=x \cdot \frac{d y}{d x}+a \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
(1) 4
(2) 3
(3) 2
(4) 1

D
83. The solution of the differential equation $\frac{d y}{d x}=\frac{1-x}{y}$ represents :
(1) a family of circles centered at $(1,0)$
(2) a family of circles centered at $(0,0)$
(3) a family of straight lines with slope -1
(4) a family of straight lines with slope +1
84. The value of Wronskian $w\left(x, x^{2}, x^{3}\right)$ is :
(1) $2 x^{4}$
(2) $2 x^{3}$
(3) $2 x^{2}$
(4) $2 x$
85. The solution of $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$ is :
(1) $y=c_{1} e^{-x}+c_{2} e^{x}$
(2) $y=c_{1} e^{-2 x}+c_{2} e^{-x}$
(3) $y=c_{1} e^{-2 x}+c_{2} e^{x}$
(4) $y=c_{1} e^{-2 x}+c_{2} e^{2 x}$
86. The P.I of $\left(D^{2}+5 D+6\right) y=e^{x}$ is :
(1) e^{x}
(2) $\frac{e^{x}}{6}$
(3) $\frac{e^{x}}{10}$
(4) $\frac{e^{x}}{12}$
87. Integrating factor of $\frac{d y}{d x}=\frac{y}{x}-1$, is :
(1) e^{-x}
(2) $e^{-\frac{1}{x}}$
(3) $\frac{1}{x}$
(4) $\frac{-1}{x}$
88. The solution of $\frac{d x}{d y}+P x=Q$, where P, Q are functions of y only or constants :
(1) $x \cdot e^{\int P \cdot d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$
(2) $y \cdot e^{\int P \cdot d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(3) $x \cdot e^{\int P d x}=\int Q \cdot e^{\int P \cdot d x} \cdot d x+c$
(4) $y \cdot e^{\int P d y}=\int Q \cdot e^{\int P d y} \cdot d y+c$
89. The sequence $\{1,0,1,0,1,0, \ldots \ldots \ldots\}$ is :
(1) increasing sequence
(2) decreasing sequence
(3) monotone sequence
(4) None of these
90. The series $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$, is :
(1) divergent
(2) convergent
(3) unbounded
(4) None of these
91. The vectors $u=(6,2,3,4), v=(0,5,-3,1)$ and $w=(0,0,7,-2)$ are :
(1) Dependent
(2) Independent
(3) Data is insufficient
(4) None of these

D
92. Let a 4×4 matrix P have determinant 10 , then the determinant of matrix $-3 P$ is :
(1) -30
(2) 30
(3) -810
(4) 810
93. The eigen values of the matrix :

$$
A=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 4 & 0 & 1 \\
3 & 1 & 5 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

are :
(1) $3,2,3,4$
(2) $1,2,4,5$
(3) $1,2,3,5$
(4) $3,2,1,4$
94. Let $S=\{(1,2,3),(1,0,-1)\}$. The value of k for which the vector $(2,1, k)$ belongs to the linear span of S, is :
(1) 1
(2) 2
(3) 3
(4) 0
95. If ' A ' is a square matrix and A^{\prime} is its transpose, then $A+A^{\prime}$ is :
(1) Symmetric
(2) Skew-symmetric
(3) Hermition
(4) Skew-Harmition
96. The dimension of zero space is :
(1) 0
(2) 1
(3) 2
(4) 3
97. Which of the following is not true ?
(1) Every subset of a linearly independent set is linearly independent
(2) Every super set of a linearly dependent set is linearly independent
(3) Any set which contains the null vector 0 is linearly dependent
(4) None of these
98. Any square matrix ' A ' is said to be Idempotent if :
(1) $A^{2}=0$
(2) $A^{2}=A$
(3) $A^{\mathrm{m}}=0$, if \exists a positive integer ' m '
(4) $A^{2}=\mathrm{I}$
99. Which of the following is true ?
(1) C is not a vector space over C
(2) C is not a vector space over R
(3) R is not a vector space over C
(4) Q is a vector space over R
100. Which of the following matrix satisfy $A^{2}-5 A=0$
(1) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(2) $\left[\begin{array}{cc}-1 & 0 \\ -2 & -3\end{array}\right]$
(3) $\left[\begin{array}{cc}0 & -10 \\ -5 & 0\end{array}\right]$
(4) $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$

Page 1 of 2

[^0]: PG-EE-June, 2023/(Statistics)(SET-X)/(D)

